Cross-segment validation of customer support for AI-based service robots at luxury, fine-dining, casual, and quick-service restaurants

Author:

Wang Yao-Chin,Papastathopoulos Avraam

Abstract

Purpose With the trend of adopting and studying artificial intelligence (AI) service robots at restaurants, the authors’ understanding of how customers perceive robots differently across restaurant segments remains limited. Therefore, building upon expectancy theory, this study aims to propose a trust-based mechanism to explain customers’ support for AI-based service robots. Design/methodology/approach For cross-segment validation, data were collected from online survey participants under the scenarios of experiencing AI service robots in luxury (n = 428), fine-dining (n = 420), casual (n = 409) and quick-service (n = 410) restaurant scenarios. Findings In all four segments, trust in technology increased willingness to accept AI service robots, which was then positively related to customers’ support for AI-based service robots. Meanwhile, customers’ AI performance expectancy mediated the relationship between trust in technology and willingness to accept AI service robots. On the other hand, at luxury, fine-dining and casual restaurants, males perceived a stronger positive relationship between trust in technology and AI performance expectancy. No generational differences were found in the four restaurant segments between trust in technology and AI performance expectancy. Originality/value To the best of the authors’ knowledge, this study is one of the first attempts in hospitality research to examine cross-segment validation of customers’ responses to AI-based service robots in the luxury, fine-dining, casual and quick-service restaurant segments.

Publisher

Emerald

Subject

Tourism, Leisure and Hospitality Management

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3