Author:
FARHANIEH BIJAN,SUNDEN BENGT
Abstract
Turbulent fully developed periodic heat transfer and fluid flow characteristics in corrugated two‐dimensional ducts with constant cross‐sectional area are numerically investigated. The governing equations are solved numerically by a finite‐volume method for elliptic flows in complex geometries using collocated variables and Cartesian velocity components. Two different turbulence models (the second moment closure and the k—ε) for approximation of the Reynolds stresses are applied. The performance of the models were assessed by comparing the results with experimental data. The results show the advantages of the stress closure model compared to the k—ε model. The overall Nusselt number and the pressure drop ratio results are obtained for the boundary condition of a uniform wall temperature for two inclination angles ø and two duct aspect ratios (H/L) and for Reynolds number ranging from around 3000 to 35,000. The overall Nusselt number predicted by the k—ε model is upto 25% higher than the values predicted by the second moment closure. The plots of the velocity vectors show a complex flow pattern. The mechanisms of heat transfer are explained by the flow phenomena separation, deflection, recirculation, and reattachment.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献