An innovative citation recommendation model for draft papers with varying degrees of information completeness

Author:

Chen Yen-Liang,Weng Cheng-Hsiung,Huang Cheng-Kui,Shih Duo-Jia

Abstract

Purpose As researchers are writing a draft paper with incomplete structure or text, one of burdensome tasks is to deliberate about which references should be cited for one sentence or paragraph of this draft. In view of the rapid increase in the number of research papers, researchers desire to figure out a better way to do citation recommendations in developing their draft papers. The purpose of this paper is to propose citation recommendation algorithms that enable the acquisition of relevant citations for research papers that are still at the drafting stage. This study attempts to help researchers to select appropriate references among the vast amount of available papers and make draft papers complete in reference citation. Design/methodology/approach This study adopts a model for recommending citations for incomplete drafts. Four algorithms are proposed in this study. The first and second algorithms are unsupervised models, applying term frequency-inverse document frequency and WordNet technologies, respectively. The third and fourth algorithms are based on the second algorithm to integrate different weight adjustment strategies to improve performance. Findings The proposed recommendation method adopts three techniques, including using WordNet to transform vector and setting adjustment weights according to structural factors and the information completeness degree, to generate citation recommendation for incomplete drafts. The experiments show that all these three techniques can significantly improve the recommendation accuracy. Originality/value None of the methods employed in previous studies can recommend articles as references for incomplete drafts. This paper addresses the situation that a draft paper can be incomplete either in structure or text or both. Recommended references, however, can be still generated and inserted into any desired sentence of the draft paper.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference15 articles.

1. Applications of collaborative annotation system in digital curation, crowdsourcing, and digital humanities;The Electronic Library,2017

2. Finlayson, M. (2014), “Java libraries for accessing the Princeton WordNet: comparison and evaluation”, Proceedings of the Seventh Global Wordnet Conference, pp. 78-85.

3. CiteSeer: an automatic citation indexing system,1998

4. Position-aligned translation model for citation recommendation,2012

5. Hirst, G. and St-Onge, D. (1998), “Lexical chains as representations of context for the detection and correction of malapropisms”, WordNet: An Electronic Lexical Database, Vol. 305, pp. 305-332.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3