Material recognition for construction quality monitoring using deep learning methods

Author:

Mahamivanan Hadi,Ghassemi Navid,Tayarani Darbandy Mohammad,Shoeibi Afshin,Hussain Sadiq,Nasirzadeh Farnad,Alizadehsani Roohallah,Nahavandi Darius,Khosravi Abbas,Nahavandi Saeid

Abstract

Purpose This paper aims to propose a new deep learning technique to detect the type of material to improve automated construction quality monitoring. Design/methodology/approach A new data augmentation approach that has improved the model robustness against different illumination conditions and overfitting is proposed. This study uses data augmentation at test time and adds outlier samples to training set to prevent over-fitted network training. For data augmentation at test time, five segments are extracted from each sample image and fed to the network. For these images, the network outputting average values is used as the final prediction. Then, the proposed approach is evaluated on multiple deep networks used as material classifiers. The fully connected layers are removed from the end of the networks, and only convolutional layers are retained. Findings The proposed method is evaluated on recognizing 11 types of building materials which include 1,231 images taken from several construction sites. Each image resolution is 4,000 × 3,000. The images are captured with different illumination and camera positions. Different illumination conditions lead to trained networks that are more robust against various environmental conditions. Using VGG16 model, an accuracy of 97.35% is achieved outperforming existing approaches. Practical implications It is believed that the proposed method presents a new and robust tool for detecting and classifying different material types. The automated detection of material will aid to monitor the quality and see whether the right type of material has been used in the project based on contract specifications. In addition, the proposed model can be used as a guideline for performing quality control (QC) in construction projects based on project quality plan. It can also be used as an input for automated progress monitoring because the material type detection will provide a critical input for object detection. Originality/value Several studies have been conducted to perform quality management, but there are some issues that need to be addressed. In most previous studies, a very limited number of material types were examined. In addition, although some studies have reported high accuracy to detect material types (Bunrit et al., 2020), their accuracy is dramatically reduced when they are used to detect materials with similar texture and color. In this research, the authors propose a new method to solve the mentioned shortcomings.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Reference66 articles.

1. Material classification via machine learning techniques: Construction projects progress monitoring;Artificial Neural Networks and Deep Learning - Applications and Perspective, Intech Open,2021

2. Quality in the constructed project: a guide for owners, designers, and constructors, A.S.o.C.E;ASCE,2011

3. Quality assurance (QA) and quality control (QC) on construction projects;Assignar,2017

4. Evaluating on the transfer learning of CNN architectures to a construction material image classification task;International Journal of Machine Learning and Computing,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3