Author:
Taniguchi Koki,Kubota Satoshi,Yasumuro Yoshihiro
Abstract
Purpose
The purpose of this study is to propose a method for vulnerable pedestrians to visualize potential obstacles on sidewalks. In recent years, the number of vulnerable pedestrians has been increasing as Japanese society has aged. The number of wheelchair users is also expected to increase in the future. Currently, barrier-free maps and street-view applications can be used by wheelchair users to check possible routes and the surroundings of their destinations in advance. However, identifying physical barriers that pose a threat to vulnerable pedestrians en route is often difficult.
Design/methodology/approach
This study uses photogrammetry to create a digital twin of the three-dimensional (3D) geometry of the existing walking space by collecting photographic images taken on sidewalks. This approach allows for the creation of high-resolution digital elevation models of the entire physical sidewalk surface from which physical barriers such as local gradients and height differences can be detected by uniform image filtering. The method can be used with a Web-based data visualization tool in a geographical information system, permitting first-person views of the ground and accurate geolocation of the barriers on the map.
Findings
The findings of this study showed that capturing the road surface with a small wide-angle camera while walking is sufficient for recording subtle 3D undulations in the road surface. The method used for capturing data and the precision of the 3D restoration results are described.
Originality/value
The proposed approach demonstrates the significant benefits of creating a digital twin of walking space using photogrammetry as a cost-effective means of balancing the acquisition of 3D data that is sufficiently accurate to show the detailed geometric features needed to navigate a walking space safely. Further, the findings showed how information can be provided directly to users through two-dimensional (2D) and 3D Web-based visualizations.
Subject
Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献