Quantitative visualization of physical barriers for vulnerable pedestrians based on photogrammetry

Author:

Taniguchi Koki,Kubota Satoshi,Yasumuro Yoshihiro

Abstract

Purpose The purpose of this study is to propose a method for vulnerable pedestrians to visualize potential obstacles on sidewalks. In recent years, the number of vulnerable pedestrians has been increasing as Japanese society has aged. The number of wheelchair users is also expected to increase in the future. Currently, barrier-free maps and street-view applications can be used by wheelchair users to check possible routes and the surroundings of their destinations in advance. However, identifying physical barriers that pose a threat to vulnerable pedestrians en route is often difficult. Design/methodology/approach This study uses photogrammetry to create a digital twin of the three-dimensional (3D) geometry of the existing walking space by collecting photographic images taken on sidewalks. This approach allows for the creation of high-resolution digital elevation models of the entire physical sidewalk surface from which physical barriers such as local gradients and height differences can be detected by uniform image filtering. The method can be used with a Web-based data visualization tool in a geographical information system, permitting first-person views of the ground and accurate geolocation of the barriers on the map. Findings The findings of this study showed that capturing the road surface with a small wide-angle camera while walking is sufficient for recording subtle 3D undulations in the road surface. The method used for capturing data and the precision of the 3D restoration results are described. Originality/value The proposed approach demonstrates the significant benefits of creating a digital twin of walking space using photogrammetry as a cost-effective means of balancing the acquisition of 3D data that is sufficiently accurate to show the detailed geometric features needed to navigate a walking space safely. Further, the findings showed how information can be provided directly to users through two-dimensional (2D) and 3D Web-based visualizations.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Reference39 articles.

1. On the analysis of road surface conditions using embedded smartphone sensors,2017

2. On-demand barrier-free street view system using sensor information from general-purpose wheelchair users,2017

3. A machine learning approach to road surface anomaly assessment using smartphone sensors;IEEE Sensors Journal,2020

4. Cabinet Office, Government of Japan. (2019a), “Report on attitudes toward barrier-free and universal design”, pp. 71-72.

5. White paper on aging society 2019;Cabinet Office, Government of Japan,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3