Improving the joint strength of the friction stir spot welding of carbon steel and copper using the design of experiments method

Author:

Abdullah Isam Tareq,Hussein Sabah KhammassORCID

Abstract

Purpose The purpose of this paper is to optimize the welding parameters: rotating speed and plunging depth of carbon steel and pure copper joints using friction stir spot welding (FSSW) with the aid of the design of experiments (DOE) method. Design/methodology/approach Carbon steel and pure copper sheets were welded using the FSSW technique with a cylindrical tool and without a probe. The welding parameters were: rotating speed: 1,120, 1,400 and 1,800 RPM and plunging depth: 0.2 and 0.4 mm. The welding process was carried out both with and without pre-heating. The welded specimens were analyzed using a shear tensile test. A microstructural investigation at the optimum conditions was carried out. The results were analyzed and optimized using the statistical software Minitab and following the DOE method. Findings Pre-heating the sample and increasing the rotating speed and plunging depth increased the tensile shear force of the joint. The plunging depth has the biggest effect on the joint efficiency compared with the rotating speed. The optimum shear force (4,560 N) was found at 1,800 RPM, 0.4 mm plunge depth and with pre-heating. The welding parameters were modified so that the samples were welded at 1,800 RPM and at plunging depths of 0.45–1 mm in 0.05 mm steps. The optimized shear force was 5,400 N. The fractured samples exhibited two types of failure mode: interfacial and nugget pull-out. Originality/value For the first time, pure copper and carbon steel sheets were welded using FSSW and a tool without a probe with ideal joint efficiency (95 percent).

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3