Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings

Author:

Bouazza Mokhtar,Benseddiq Noureddine

Abstract

Purpose – The purpose of this paper is to investigate an analytical modeling for the thermoelastic buckling behavior of functionally graded (FG) rectangular plates (FGM) under thermal loadings. The material properties of FGM are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Derivations of equations are based on novel refined theory using a new hyperbolic shear deformation theory. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. In addition, numerical results for a variety of FG plates with simply supported edge are presented and compared with those available in the literature. Moreover, the effects of geometrical parameters of dimension the length to width aspect ratio (a/b), the plate width to thickness ratio (b/h), and material properties index (k) on the FGM buckling temperature difference are determined and discussed. Design/methodology/approach – In the current paper, the application of the refined theory proposed by Shimpi is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. It is extended to the analysis of buckling behavior of ceramic-metal FG plates subjected to the three types of thermal loadings, namely; uniform temperature rise, linear temperature change across the thickness, and nonlinear temperature change across the thickness. The material properties of the FG plates are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results, wherever possible. Additionally, the effects of geometrical parameters and material properties on the buckling temperature difference of FGM plates are determined and discussed. Findings – Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power-law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Originality/value – To the best of the authors’ knowledge, there are no research works for thermal buckling analysis of FG rectangular plates based on new four-variable refined plate theory (RPT). The novelty of this paper is extended the use of the above-mentioned RPT with the addition of a new function proposed by Shimpi for thermal buckling analysis of plates made of FG materials. Unlike any other theory, the number of unknown functions involved is only four, as against five in the case of other shear deformation theories. The theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. The plates subjected to the two types of thermal loadings, namely; uniform temperature rise and nonlinear temperature change across the thickness. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3