Author:
Ren Tianyu,Dong Yunfei,Wu Dan,Chen Ken
Abstract
Purpose
The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque: inherent actuator flexibility and nonlinear friction.
Design/methodology/approach
In this paper, a joint torque controller with an extended state observer is used to decouple the joint actuators from the multi-rigid-body system of a constrained robot and compensate the motor friction. Moreover, to realize robot force control, the authors embed this controller into the impedance control framework.
Findings
Results have been given in simulations and experiments in which the proposed joint torque controller with an extended state observer can effectively estimate and compensate the total disturbance. The overall control framework is analytically proved to be stable, and further it is validated in experiments with a robot testbed.
Practical implications
With the proposed robot force controller, the robot is able to change its stiffness in real time and therefore take variable tasks without any accessories, such as the RCC or 6-DOF F/T sensor. In addition, programing by demonstration can be realized easily within the proposed framework, which makes the robot accessible to unprofessional users.
Originality/value
The main contribution of the presented work is the design of a model-free robot force controller with the ability to reject torque disturbances from robot-actuator coupling effect and motor friction, applicable for both constrained and unconstrained environments. Simulation and experiment results from a 7-DOF robot are given to show the effectiveness and robustness of the proposed controller.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference49 articles.
1. A globally stable state feedback controller for flexible joint robots;Advanced Robotics,2001
2. A passivity based cartesian impedance controller for flexible joint robots-part II: full state feedback, impedance design and experiments,2004
3. A unified passivity-based control framework for position, torque and impedance control of flexible joint robots;The International Journal of Robotics Research,2007
4. Dynamic damping control: implementation issues and simulation results,1990
5. CB: a humanoid research platform for exploring neuroscience;Advanced Robotics,2007
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献