Real-time monocular 3D perception with ORB-Features

Author:

Ji Babing,Cao Qixin

Abstract

Purpose This paper aims to propose a new solution for real-time 3D perception with monocular camera. Most of the industrial robots’ solutions use active sensors to acquire 3D structure information, which limit their applications to indoor scenarios. By only using monocular camera, some state of art method provides up-to-scale 3D structure information, but scale information of corresponding objects is uncertain. Design/methodology/approach First, high-accuracy and scale-informed camera pose and sparse 3D map are provided by leveraging ORB-SLAM and marker. Second, for each frame captured by a camera, a specially designed depth estimation pipeline is used to compute corresponding 3D structure called depth map in real-time. Finally, depth map is integrated into volumetric scene model. A feedback module has been designed for users to visualize intermediate scene surface in real-time. Findings The system provides more robust tracking performance and compelling results. The implementation runs near 25 Hz on mainstream laptop based on parallel computation technique. Originality/value A new solution for 3D perception is using monocular camera by leveraging ORB-SLAM systems. Results in our system are visually comparable to active sensor systems such as elastic fusion in small scenes. The system is also both efficient and easy to implement, and algorithms and specific configurations involved are introduced in detail.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference17 articles.

1. SURF: Speeded up robust features,2006

2. PatchMatch Stereo - Stereo matching with slanted support windows,2011

3. A volumetric method for building complex models from range images,1996

4. SVO: fast semi-direct monocular visual odometry,2014

5. Multimodal measurements fusion for surface material categorization;IEEE Transactions on Instrumentation and Measurement,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual 3D Perception Method Based on the Monocular Single-Degree-of-Freedom Rotation;2023 International Symposium on Intelligent Robotics and Systems (ISoIRS);2023-05

2. Routing algorithm of real-time multicast communication based on Hadoop platform;2021 4th International Conference on Information Systems and Computer Aided Education;2021-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3