Fabrication of temperature-regulating functional fabric based on n-octadecane/SWCNTs composite phase change material

Author:

Zhang Wei,Weng Jiali,Hao Shang,Xie Yuan,Li Yonggui

Abstract

Purpose Fabrics with photothermal conversion functions were developed based on the introduction of shape stable composite phase change materials (CPCMs). Design/methodology/approach Acidified single-walled carbon nanotubes (SWCNTs) were selected as support material to prepare CPCMs with n-octadecane to improve the thermal conductivity and shape stability. The CPCMs were finished onto the surface of cotton fabric through the coating and screen-printing method. The chemical properties of CPCMs were characterized by Fourier transform infrared spectrometer, XRD and differential scanning calorimetry (DSC). The shape stability and thermal conductivity were also evaluated. In addition, the photothermal conversion and temperature-regulating performance of the finished fabrics were analyzed. Findings When the addition amount of acidified SWCNTs are 14% to the mass of n-octadecane, the best shape stability of CPCMs is obtained. DSC analysis shows that the latent heat energy storage of CPCMs is as high as 183.1 J/g. The thermal conductivity is increased by 84.4% compared with that of n-octadecane. The temperature-regulating fabrics coated with CPCMs have good photothermal conversion properties. Research limitations/implications CPCMs with high latent heat properties are applied to the fabric surface through screen printing technology, which not only gives the fabric the photothermal conversion performance but also reflects the design of personalized patterns. Practical implications CPCMs and polydimethylsiloxane (PDMS) are mixed to make printing paste and printed cotton fabric with temperature-regulating functional is developed. Originality/value SWCNTs and n-octadecane are composited to prepare CPCMs with excellent thermal properties, which can be mixed with PDMS to make printing paste without adding other pastes. The fabric is screen-printed to obtain a personalized pattern and can be given a thermoregulatory function.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference31 articles.

1. Thermal properties of beeswax/graphene phase change material as energy storage for building applications;Applied Thermal Engineering,2017

2. Thermal properties and stability of n‐octadecane based composites containing multiwalled carbon nanotubes;Polymer Composites,2011

3. Thermal properties of single-walled carbon nanotube forests with various volume fractions;International Journal of Heat and Mass Transfer,2021

4. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes;Nanotechnology,1999

5. Ultraviolet light-initiated preparation of phase change material microcapsules and its infrared imaging effect on fabric;Pigm Resin Technol,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3