The effect of window design factors on the cooling load in hospitals wards

Author:

Almhafdy AbdulbasitORCID,Alsehail Abdullah MohammedORCID

Abstract

PurposeThis paper investigates the optimization of window design factors (WDFs) in hospital buildings, particularly in government hospitals within the arid climate of the Qassim region, with the aim of achieving a better cooling load reduction. Continuous monitoring of the hospital ward section is crucial due to patients' needs, requiring optimal indoor air quality and cooling load.Design/methodology/approachThe study identifies the optimal conditions for WDF design to mitigate cooling load, including window-to-wall ratio (WWR), window orientation (WO), room size and U-value (thermal properties), effectively reduce energy consumption in terms of sensible cooling load (MWh/m2) and comply with local codes. Data collection involved a smart weather station, while the Integrated Environmental Solution Virtual Environment (IESVE) software facilitated the simulation process.FindingsKey findings reveal that larger patient rooms were about 40% more energy-efficient than smaller rooms. The northern orientation showed lower energy consumption, and specific WWRs and glazing U-values significantly affected energy loads. In an analysis of U-value changes in energy performance based on the Saudi Building Code (SBC), the presented values did not meet the minimum energy consumption standards. For a valid 40% WWR with a thermal permeability of 2.89, 0.181 MWh/m2 was consumed, while for an invalid 100% WWR with the same permeability but facing the north, 0.156 MWh/m2 was consumed, which is considered an invalid practice. It is vital to follow prescribed standards to ensure energy efficiency and avoid unnecessary costs.Originality/valueFocus lies in emphasizing the significance of adhering to prescribed standards, such as SBC, to guarantee energy efficiency and prevent unwarranted expenses. Additionally, the authors highlight the crucial role of optimizing glazing properties and allocating the WWR appropriately to achieve energy-efficient building design, accounting for diverse orientations and climatic conditions.

Publisher

Emerald

Subject

Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Architecture,Cultural Studies

Reference22 articles.

1. Energy consumption in buildings: a correlation for the influence of window to wall ratio and window orientation in Tripoli, Libya;Journal of Building Engineering,2017

2. Energy analysis of health center facilities in Saudi Arabia: influence of building orientation, shading devices, and roof solar reflectance;Procedia Engineering,2015

3. Impact of glazing to wall ratio in various climatic regions: a case study;Journal of King Saud University - Engineering Sciences,2019

4. A thermal performance parametric study of window type, orientation, size and shadowing effect;Sustainable Cities and Society,2016

5. Argaam (2022), “Saudi Arabia's electricity consumption rises 4.2% in 2021”, available at: https://www.argaam.com/en/article/articledetail/id/1611319 (accessed 23 October 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3