Blockchain-based digital twin data provenance for predictive asset management in building facilities

Author:

Tavakoli Peiman,Yitmen IbrahimORCID,Sadri HabibORCID,Taheri Afshin

Abstract

Purpose The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin smart and sustainable built environment (DT) for predictive asset management (PAM) in building facilities.Design/methodology/approach Qualitative research data were collected through a comprehensive scoping review of secondary sources. Additionally, primary data were gathered through interviews with industry specialists. The analysis of the data served as the basis for developing blockchain-based DT data provenance models and scenarios. A case study involving a conference room in an office building in Stockholm was conducted to assess the proposed data provenance model. The implementation utilized the Remix Ethereum platform and Sepolia testnet.Findings Based on the analysis of results, a data provenance model on blockchain-based DT which ensures the reliability and trustworthiness of data used in PAM processes was developed. This was achieved by providing a transparent and immutable record of data origin, ownership and lineage.Practical implications The proposed model enables decentralized applications (DApps) to publish real-time data obtained from dynamic operations and maintenance processes, enhancing the reliability and effectiveness of data for PAM.Originality/value The research presents a data provenance model on a blockchain-based DT, specifically tailored to PAM in building facilities. The proposed model enhances decision-making processes related to PAM by ensuring data reliability and trustworthiness and providing valuable insights for specialists and stakeholders interested in the application of blockchain technology in asset management and data provenance.

Publisher

Emerald

Subject

Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Architecture,Cultural Studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3