Activity recognition from trunk muscle activations for wearable and non-wearable robot conditions

Author:

Gonsalves NiharORCID,Ogunseiju Omobolanle RuthORCID,Akanmu Abiola AbosedeORCID

Abstract

PurposeRecognizing construction workers' activities is critical for on-site performance and safety management. Thus, this study presents the potential of automatically recognizing construction workers' actions from activations of the erector spinae muscles.Design/methodology/approachA lab study was conducted wherein the participants (n = 10) performed rebar task, which involved placing and tying subtasks, with and without a wearable robot (exoskeleton). Trunk muscle activations for both conditions were trained with nine well-established supervised machine learning algorithms. Hold-out validation was carried out, and the performance of the models was evaluated using accuracy, precision, recall and F1 score.FindingsResults indicate that classification models performed well for both experimental conditions with support vector machine, achieving the highest accuracy of 83.8% for the “exoskeleton” condition and 74.1% for the “without exoskeleton” condition.Research limitations/implicationsThe study paves the way for the development of smart wearable robotic technology which can augment itself based on the tasks performed by the construction workers.Originality/valueThis study contributes to the research on construction workers' action recognition using trunk muscle activity. Most of the human actions are largely performed with hands, and the advancements in ergonomic research have provided evidence for relationship between trunk muscles and the movements of hands. This relationship has not been explored for action recognition of construction workers, which is a gap in literature that this study attempts to address.

Publisher

Emerald

Subject

Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Architecture,Cultural Studies

Reference56 articles.

1. Cyber-physical postural training system for construction workers;Automation in Construction,2020

2. Smartphone-based construction workers' activity recognition and classification;Automation in Construction,2016

3. Simple solutions: ergonomics for construction workers;US Department of Health and Human Services, Public Health Service, Centers …,2007

4. Identification of EMG signals using discriminant analysis and SVM classifier;Expert Systems with Applications,2012

5. Wearable insole pressure system for automated detection and classification of awkward working postures in construction workers;Automation in Construction,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3