On accelerated symmetric stiffness techniques for non‐associated plasticity with application to soil problems

Author:

Chen Xi,Cheng Yong‐Gang

Abstract

PurposeThe initial stiffness method has been extensively adopted for elasto‐plastic finite element analysis. The main problem associated with the initial stiffness method, however, is its slow convergence, even when it is used in conjunction with acceleration techniques. The Newton‐Raphson method has a rapid convergence rate, but its implementation resorts to non‐symmetric linear solvers, and hence the memory requirement may be high. The purpose of this paper is to develop more advanced solution techniques which may overcome the above problems associated with the initial stiffness method and the Newton‐Raphson method.Design/methodology/approachIn this work, the accelerated symmetric stiffness matrix methods, which cover the accelerated initial stiffness methods as special cases, are proposed for non‐associated plasticity. Within the computational framework for the accelerated symmetric stiffness matrix techniques, some symmetric stiffness matrix candidates are investigated and evaluated.FindingsNumerical results indicate that for the accelerated symmetric stiffness methods, the elasto‐plastic constitutive matrix, which is constructed by mapping the yield surface of the equivalent material to the plastic potential surface, appears to be appealing. Even when combined with the Krylov iterative solver using a loose convergence criterion, they may still provide good nonlinear convergence rates.Originality/valueCompared to the work by Sloan et al., the novelty of this study is that a symmetric stiffness matrix is proposed to be used in conjunction with acceleration schemes and it is shown to be more appealing; it is assembled from the elasto‐plastic constitutive matrix by mapping the yield surface of the equivalent material to the plastic potential surface. The advantage of combining the proposed accelerated symmetric stiffness techniques with the Krylov subspace iterative methods for large‐scale applications is also emphasized.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3