Author:
Chen Wu‐Lin,Huang Chin‐Yin,Hung Chi‐Wei
Abstract
PurposeThe purpose of this paper is to find the optimal values of process parameters in injection molding when both warpage and shrinkage are minimized.Design/methodology/approachIn finding the optimal values, advantages of finite element software, Moldflow, and dual response surface method (dual RSM) combined with the nonlinear programming technique by Lingo are exploited. Considering the nine process parameters, injection time, injection pressure, packing pressure, packing time, cooling time, coolant temperature, mold‐open time, melting temperature and mold surface temperature, a series of mold analyses are performed to exploit the warpage and shrinkage data. In the analyses, warpage is considered the primary response, whereas shrinkage is the secondary response.FindingsThe results indicate that dual RSM combined with the nonlinear programming technique can outperform the Taguchi's optimization method. The optimal process values are also confirmed by re‐running experiments on Moldflow. Additionally, an auxiliary dual RSM model is proposed to search for a better result based on the given findings by dual RSM at the cost of running extra experiments. Based on dual RSM, a multiple objective optimization for the whole plastic product is finally suggested to integrate the dual RSM models that are developed for the individual nodes or edges.Originality/valueThis paper proposes a new method to find the optimal process for plastic injection molding.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献