The continuous adjoint method as a guide for the design of flow control systems based on jets

Author:

Zymaris A.S.,Papadimitriou D.I.,Papoutsis‐Kiachagias E.M.,Giannakoglou K.C.,Othmer C.

Abstract

PurposeThe purpose of this paper is to propose the use of the continuous adjoint method as a tool to identify the appropriate location and “type” (suction or blowing) of steady jets used in active flow control systems.Design/methodology/approachThe method is based on continuous adjoint and covers both internal and external aerodynamics. The adjoint equations, including the adjoint to the SpalartAllmaras turbulence model and their boundary conditions are formulated. At the cost of solving the flow and adjoint equations just once, the sensitivity derivatives of the objective function with respect to hypothetical (normal) jet velocities at all wall nodes are computed. Comparisons of the computed sensitivities with finite differences and parametric studies to assess the present method are included.FindingsThough the sensitivities are computed for zero jet velocities, they adequately support decision making on: the recommended location of jet(s), at boundary nodes with high absolute valued sensitivities; and the selection between suction or blowing jets, based on the sign of the computed sensitivities. Regarding adjoint methods, two important findings of this work are: the role of the adjoint pressure which proves to be an excellent sensor in flow control problems; and the prediction accuracy of the proposed adjoint method compared to the commonly made assumption of “frozen turbulence”.Originality/valueFirst use of the continuous adjoint method using full differentiation of the turbulence model, in flow control optimization. A low‐cost design tool for recommending some of the most important jet characteristics.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3