Prediction of strength of reinforced lightweight soil using an artificial neural network

Author:

Park H.I.,Kim Y.T.

Abstract

PurposeReinforced lightweight soil (RLS) consisting of dredged soil, cement, air‐foam, and waste fishing net is considered to be an eco‐friendly backfilling material because it provides a means to recycle both dredged soil and waste fishing net. It may be difficult to find an optimum mixing ratio of RLS considering the design criteria and the construction's situation using the limited test results because the unconfined compressive strength is complicatedly influenced by various mixing ratios of admixtures. As a result, in order to expedite the field application of RLS, an appropriate prediction method is needed. The paper aims to address these issues.Design/methodology/approachIn this study, an artificial neural network (ANN) model that was based on experimental test results performed on various mixing ratios, was developed to predict the unconfined compressive strength of RLS.FindingsIt was found that the unconfined compressive strength of RLS at a given mixing ratio could be reasonably estimated using the developed neural network model. In addition, sensitivity analysis was also conducted to evaluate the effect of mixing conditions on the compressive strength of RLS.Practical implicationsRLS is considered to be environmentally friendly because it provides a means to recycle both dredged soil and waste fishing net. The contractors could use the proposed ANN model as an alternative method to predict the strength of RLS with a specific mixing ratio.Originality/valueThis paper reveals that the developed ANN model can be served as a simple and reliable predictive tool for the strength of RLS without excessive laboratory tests for various admixture contents. An optimum admixture ratio of composed materials to get a designed strength could be easily found by using the proposed ANN model.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3