Abstract
PurposeBased on the theoretical framework, this paper analyzes the sentiment-herding relationship in emerging stock markets (ESMs). First, it aims to examine the effect of investor sentiment on herding. Second, it seeks the direction of causality between sentiment and herding time series.Design/methodology/approachThe present study applies the Exponential Generalized Auto_Regressive Conditional Heteroskedasticity (EGARCH) model to capture the volatility clustering of herding on the financial market and to investigate the role of the investor sentiment on herding behaviour. Then the vector autoregression (VAR) estimation uses the Granger causality test to determine the direction of causality between the investor sentiment and herding. This study uses a sample consisting of stocks listed on the Shanghai Composite index (SSE) (348 stocks), the Jakarta composite index (JKSE) (118 stocks), the Mexico IPC index (14 stocks), the Russian Trading System index (RTS) (12 stocks), the Warsaw stock exchange General index (WGI) (106 stocks) and the FTSE/JSE Africa all-share index (76 stocks). The sample includes 5,020 daily observations from February 1, 2002, to March 31, 2021.FindingsThe research findings show that the sentiment has a significant negative impact on the herding behaviour pointing out that the higher the investor sentiment, the lower the herding. However, the results of the present study indicate that a higher investor sentiment conducts a higher herding behaviour during market downturns. Then the outcomes suggest that during the crisis period, the direction is one-way, from the investor sentiment to the herding behaviour.Practical implicationsThe findings may have implications for universal policies of financial regulators in EMs. We have found evidence that the Emerging investor sentiment contributes to the investor herding behaviour. Therefore, the irrational investor herding behaviour can increase the stock market volatility, and in extreme cases, it may lead to bubbles and crashes. Market regulators could implement mechanisms that can supervise the investor sentiment and predict the investor herding behaviour, so they make policies helping stabilise stock markets.Originality/valueThe originality of this paper lies in investigate the sentiment-herding relationship during the Surprime crisis and the Covid-19 epidemic in the EMs.
Reference65 articles.
1. Bubbles, crises, and policy;Oxford Review of Economic Policy,1999
2. Coronavirus (COVID-19) an epidemic or pandemic for financial markets;Journal of Behavioral and Experimental Finance,2020
3. Herding in the Singapore stock exchange;Journal of Economics and Business,2019
4. Herding and social pressure in trading tasks: a behavioural analysis,2007