Enhanced optimal trained hybrid classifiers for aging assessment of power transformer insulation oil

Author:

Singh Harkamal Deep,Singh Jashandeep

Abstract

Purpose As a result of the deregulations in the power system networks, diverse beneficial operations have been competing to optimize their operational costs and improve the consistency of their electrical infrastructure. Having certain and comprehensive state assessment of the electrical equipment helps the assortment of the suitable maintenance plan. Hence, the insulation condition monitoring and diagnostic techniques for the reliable and economic transformers are necessary to accomplish a comprehensive and proficient transformer condition assessment. Design/methodology/approach The main intent of this paper is to develop a new prediction model for the aging assessment of power transformer insulation oil. The data pertaining to power transformer insulation oil have been already collected using 20 working power transformers of 16-20 MVA operated at various substations in Punjab, India. It includes various parameters associated with the transformer such as breakdown voltage, moisture, resistivity, tan δ, interfacial tension and flashpoint. These data are given as input for predicting the age of the insulation oil. The proposed aging assessment model deploys a hybrid classifier model by merging the neural network (NN) and deep belief network (DBN). As the main contribution of this paper, the training algorithm of both NN and DBN is replaced by the modified lion algorithm (LA) named as a randomly modified lion algorithm (RM-LA) to reduce the error difference between the predicted and actual outcomes. Finally, the comparative analysis of different prediction models with respect to error measures proves the efficiency of the proposed model. Findings For the Transformer 2, root mean square error (RMSE) of the developed RM-LA-NN + DBN was 83.2, 92.5, 40.4, 57.4, 93.9 and 72 per cent improved than NN + DBN, PSO, FF, CSA, PS-CSA and LA-NN + DBN, respectively. Moreover, the RMSE of the suggested RM-LA-NN + DBN was 97.4 per cent superior to DBN + NN, 96.9 per cent superior to PSO, 81.4 per cent superior to FF, 93.2 per cent superior to CSA, 49.6 per cent superior to PS-CSA and 36.6 per cent superior to LA-based NN + DBN, respectively, for the Transformer 13. Originality/value This paper presents a new model for the aging assessment of transformer insulation oil using RM-LA-based DBN + NN. This is the first work uses RM-LA-based optimization for aging assessment in power transformation insulation oil.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference36 articles.

1. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm;Computers & Structures,2016

2. Ageing assessment of transformer paper insulation through post mortem analysis;IEEE Transactions on Dielectrics and Electrical Insulation,2014

3. Optimization using lion algorithm: a biological inspiration from lion’s social behavior;Evolutionary Intelligence,2018

4. Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers;IEE Proceedings – Science, Measurement and Technology,1994

5. Global sensitivity estimates for neural network classifiers;IEEE Transactions on Neural Networks and Learning Systems,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3