Exploring knowledge flow within a technology domain by conducting a dynamic analysis of a patent co-citation network

Author:

Smojver Vladimir,Štorga Mario,Zovak Goran

Abstract

Purpose This paper aims to present a methodology by which future knowledge flow can be predicted by predicting co-citations of patents within a technology domain using a link prediction algorithm applied to a co-citation network. Design/methodology/approach Several methods and approaches are used: a dynamic analysis of a patent citation network to identify technology life cycle phases, patent co-citation network mapping from the patent citation network and the application of link prediction algorithms to the patent co-citation network. Findings The results of the presented study indicate that future knowledge flow within a technology domain can be predicted by predicting patent co-citations using the preferential attachment link prediction algorithm. Furthermore, they indicate that the patent – co-citations occurring between the end of the growth life cycle phase and the start of the maturation life cycle phase contribute the most to the precision of the knowledge flow prediction. Finally, it is demonstrated that most of the predicted knowledge flow occurs in a time period closely following the application of the link – prediction algorithm. Practical implications By having insight into future potential co-citations of patents, a firm can leverage its existing patent portfolio or asses the acquisition value of patents or the companies owning them. Originality/value It is demonstrated that the flow of knowledge in patent co-citation networks follows a rich get richer intuition. Moreover, it is show that the knowledge contained in younger patents has a greater chance of being cited again. Finally, it is demonstrated that these co-citations can be predicted in the short term when the preferential attachment algorithm is applied to a patent co-citation network.

Publisher

Emerald

Subject

Management of Technology and Innovation,Strategy and Management

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3