Abstract
Purpose
The purpose of this paper is to analyze the electric propulsion use in civil aviation and propose a framework for certification of electric propulsion subsystems. Although electric propulsion architectures are discussed as key technology for the future of aviation, the industry standards as well as regulations fail to cover the application in full extent, specifically for commercial large airplanes. This paper proposes an approach for the analyses of reliability and certification of the new-generation propulsion system by pointing out the “common structure” among the possible architectures.
Design/methodology/approach
The research process used in this paper consists of following steps: the challenges of the hybrid-electric propulsion is listed, the architectures of the hybrid-electric applications in the literature are identified, the differences of the hybrid architectures from the present applications by means of application and standardization are discovered, the architectures are analyzed and the two main subsystems are defined – the present combustion system and the common unit, which is a similar structure used in all-electric aircraft. For this purpose, the standards used for design basis and certification of the present propulsion system and their relationship with the subsystems of the architectures have been analyzed. The procedure for the reliability assessment of the system is given, a framework for the safety assessment and the certification of the propulsion systems is proposed to make it easier and without sacrificing the already accumulated experience. This study shows that by using the common unit, the present certification framework can be used, by focusing on the reliability of the common unit and its integration with the rest of the architecture.
Findings
A specific definition of common unit is proposed, to point out the difference in certification efforts of hybrid-electric propulsion architectures. Yet, there is no data available for propulsion-level airborne battery and electrical systems to assess the reliability. Thus, dividing the propulsion system into two main systems and providing a model for certification of the common unit sub-system would be beneficial for easy deployment of the hybrid architectures both for design and for certification. In this paper, it is proposed that by using this common unit, the present certification framework can be used as it is, by focusing on the reliability of the common unit and its integration with the rest of the architecture.
Practical implications
The aircraft certification regulations act in two ways: they provide a starting point for new design projects, and they are a basis for certification of the final system. This study aims to draw focus on certification issues on the new-generation hybrid-electric propulsion systems. With the introduction of hybrid-electric propulsion for large aircraft, the present standards (CS-25, CS-E, CS-P, CS-Battery and CS-APU) create an obstacle for further progress as their borders get into each other. Instead of developing a new set of standard(s), this paper proposes a new approach by dividing the propulsion system into two subsystems.
Originality/value
This research proposes a definition of “common unit” for simplification of the hybrid-electric propulsion architectures for large civil aircraft. The common unit consists of both battery and electrical components and their reliability shall be considered for hybrid-electric propulsion.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献