Machine learning regression for estimating the cost range of building projects

Author:

Gurmu Argaw,Miri Mani Pourdadash

Abstract

Purpose Several factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning phase. This paper aims to identify the cost significant parameters and explore the potential for improving the accuracy of cost forecasts for buildings using machine learning techniques and large data sets. Design/methodology/approach The Australian State of Victoria Building Authority data sets, which comprise various parameters such as cost of the buildings, materials used, gross floor areas (GFA) and type of buildings, have been used. Five different machine learning regression models, such as decision tree, linear regression, random forest, gradient boosting and k-nearest neighbor were used. Findings The findings of the study showed that among the chosen models, linear regression provided the worst outcome (r2 = 0.38) while decision tree (r2 = 0.66) and gradient boosting (r2 = 0.62) provided the best outcome. Among the analyzed features, the class of buildings explained about 34% of the variations, followed by GFA and walls, which both accounted for 26% of the variations. Originality/value The output of this research can provide important information regarding the factors that have major impacts on the costs of buildings in the Australian construction industry. The study revealed that the cost of buildings is highly influenced by their classes.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Reference45 articles.

1. Application of machine learning in predicting construction project profit in Ghana using support vector regression algorithm (SVRA);Engineering, Construction and Architectural Management,2021

2. The degree of accuracy and factors that influence the uncertainty of SME cost estimates;International Journal of Construction Management,2019

3. Comparative assessment of insulated concrete wall technologies and wood-frame walls in residential buildings: a multi-criteria analysis of hygrothermal performance, cost, and environmental footprints;Advances in Building Energy Research,2021

4. Arnaldo, M. (2021), “Introduction to K-Fold Cross-Validation in R”, available at: www.analyticsvidhya.com/blog/2021/03/introduction-to-k-fold-cross-validation-in-r/ (accessed 24 August 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3