A simulation model with synchronization manufacturing stations

Author:

Lin Feng‐Jyh,Chen Yi‐Min

Abstract

PurposeThe aim of this paper is to develop an efficient analytical procedure to evaluate performance of the most general pull production systems particularly when multiple‐part‐types are involved. The authors consider a kanban controlled production system that can be modelled as a closed queuing network with different product classes. The production line is decomposed into stages which consist of one or several stations and an output buffer. Each stage is associated with a given number of kanbans. The main idea of this analytical algorithm is to analyze each subnetwork individually using a product form approximation technique. The iterative procedure is used to find the unknown parameters.Design/methodology/approachThe authors design a multiclass queuing network that can be used to represent kanban controlled production systems. To solve this model, three procedures are used: decompose the original network into M subnetworks, convergence of unknown parameters in each subnetwork, and convergence of unknown parameters in the original network. The authors now describe these procedures separately.FindingsThe main contribution of this paper is the formulation of the problem of kanban controlled production systems with several part‐types. The methodology is based on approximate formula with decomposition and is applicable to more general manufacturing environments. The authors' method can be applied to both limited and unlimited demands. The analytical algorithm designed in this work has demonstrated excellent performance in analyzing kanban controlled production systems.Originality/valueThe methodology of this algorithm is based on approximate formula and is applicable to more general manufacturing environments.

Publisher

Emerald

Subject

Management Science and Operations Research,General Business, Management and Accounting

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3