Lubricating characteristics and sealing performance of mixed TEHD analysis of piston-cylinder interface in the piston pump

Author:

Yan Kanghao,Huang Dan

Abstract

Purpose In high-pressure pumps, due to the interaction of asperities on the upper and lower surfaces, the piston–cylinder interface suffers severe lubrication and sealing problems during mixed lubrication. This study aims to establish a mixed thermo-elastohydrodynamic (EHD) model for the lubrication gap to determine how working conditions affect the lubricating characteristics and sealing performance of the interface. Design/methodology/approach A mixed thermo-EHD lubrication model is established to investigate the lubricating characteristics and sealing performance of the interface between the piston and cylinder. The model considers piston tilting, thermal effect, surface roughness and bushing deformation. The interface lubricating characteristics and sealing performance under different working conditions are calculated by the proposed numerical model. Findings A higher inlet pressure contributes to an increase in the minimum film thickness. Increased shaft speed can significantly reduce the minimum film thickness, resulting in severe wear. Compared to roughness, the impact of the thermal effect on the interface sealing performance is more significant. Originality/value The proposed lubrication model in this study offers a theoretical framework to evaluate the lubricating characteristics and sealing performance at the lubrication gap. Furthermore, the results provide references for properly selecting piston-cylinder surface processing parameters. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0072/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3