Fatigue Properties of BGA Solder Joints: A Comparison of Thermal and Power Cycle Tests

Author:

Albrecht H.‐J.,Gamalski J.

Abstract

To meet the state‐of‐the‐art requirements of BGA assemblies necessitates direct coupling of field conditions, simulation tools for life‐time study and advanced experiments for the assessment of physical degradation. For conventionally soldered SMD components, transformations between test and field conditions are still not completely known. For new types of array components, the answers critically depend upon ‘Component age’ and change in fatigue mechanisms. The increasing complexity of microelectronic assemblies and the hidden joints of BGAs lead to an increase in reliability problems in this field. Therefore, to describe failure‐free times for different applications, fatigue relevant parameters of the ball solder joints need to be studied. With regard to the thermal coefficient of expansion, BGAs are mainly asymmetrical, consequently residual strains and stresses are generated in the solder joint array. The level of strains and stresses depends upon the global and local mismatch, the applied operating conditions and the temperature distribution in the ball solder joint array (chip location, ambient and operating temperature). For thermo‐mechanical cycling procedures, hold and ramp times at upper and lower temperatures (e.g., −20°C/+100°C) are used to initiate strains in materials and interfaces. BGAs and PCBs show comparable thermal levels with regards to the test procedures mentioned before, and the resulting stress conditions in the ball solder joints are a function of package size, DNP, etc. The test results with regard to the generation of cracks are not directly comparable to the fatigue behaviour under operating conditions. Therefore, different types of degradation tests were developed: thermo‐mechanical, mechanical, electrical and/or corrosive procedures. Depending upon the chip location in the BGA package (symmetrically: PBGA, TBGA, CBGA; asymmetrically :MCM‐BGA) frequencies, lateral and vertical temperature distribution under simulated power dissipations, and the internally generated heat will be used to induce stresses in the ball solder joints. For different values of power dissipation and ambient conditions, thermal measurements were performed, screening the top to the bottom side of the BGA and the array field. The resulting information is a precondition in order to define power cycle parameters. For different test procedures, locations of defects, crack initiation and growth in ball solder joints were studied by metallographic analysis. The practical measurements serve as analytical input to compare thermal and power cycle tests and they are a necessary step to perform a lifetime prediction.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference10 articles.

1. 1 Bradley, E. and Banerji, K., ‘Effect of PCB Finish on the Reliability and Wettability of Ball Grid Array Packages’, Proceedings 45th Electronic Components and Technology Conference, Las Vegas, pp. 1028‐1038, May (1995).

2. 2Lau, J.H. ‘Ball Grid Array Technology’, McGraw Hill, Inc.(1995).

3. 3 Hwang, J.S., ‘Ball Grid Array and Fine Pitch Peripheral Interconnections’, Electrochemical Publications, Port Erin, Isle of Man (1995).

4. 4 Albrecht, H.J., Gamalski, J. and Petzold, G., ‘Metallurgical, Interfacial and Constructive Aspects on the Reliability of BGA Solder Joints’, Proceedings Surface Mount International, San Jose, pp.327‐343, August (1995).

5. 5 Darveaux, R., ‘Temperature Dependent Mechanical Behaviour of Plastic Packaging Materials’, Proceedings 45th Electronic Components and Technology Conference, Las Vegas, pp.1054‐1058, May (1995).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3