An investigation of the factors influencing cost system functionality using decision trees, support vector machines and logistic regression

Author:

Kuzey Cemil,Uyar Ali,Delen Dursun

Abstract

Purpose The paper aims to identify and critically analyze the factors influencing cost system functionality (CSF) using several machine learning techniques including decision trees, support vector machines and logistic regression. Design/methodology/approach The study used a self-administered survey method to collect the necessary data from companies conducting business in Turkey. Several prediction models are developed and tested; a series of sensitivity analyses is performed on the developed prediction models to assess the ranked importance of factors/variables. Findings Certain factors/variables influence CSF much more than others. The findings of the study suggest that utilization of management accounting practices require a functional cost system, which is supported by a comprehensive cost data management process (i.e. acquisition, storage and utilization). Research limitations/implications The underlying data were collected using a questionnaire survey; thus, it is subjective which reflects the perceptions of the respondents. Ideally, it is expected to reflect the objective of the practices of the firms. Second, the authors have measured CSF it on a “Yes” or “No” basis which does not allow survey respondents reply in between them; thus, it might have limited the choices of the respondents. Third, the Likert scales adopted in the measurement of the other constructs might be limiting the answers of the respondents. Practical implications Information technology plays a very important role for the success of CSF practices. That is, successful implementation of a functional cost system relies heavily on a fully integrated information infrastructure capable of constantly feeding CSF with accurate, relevant and timely data. Originality/value In addition to providing evidence regarding the factors underlying CSF based on a broad range of industries interesting finding, this study also illustrates the viability of machine learning methods as a research framework to critically analyze domain specific data.

Publisher

Emerald

Subject

General Economics, Econometrics and Finance,Accounting,Management Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A social selection mechanism for sports betting market;Decision Support Systems;2024-03

2. Enhancing Book Recommendations on GoodReads: A Data Mining Approach Based Random Forest Classification;Lecture Notes in Networks and Systems;2024

3. A Survey and Comparative Analysis of Relevant Approaches of Recommendation System;2023 6th International Conference on Contemporary Computing and Informatics (IC3I);2023-09-14

4. Forecasting in financial accounting with artificial intelligence – A systematic literature review and future research agenda;Journal of Applied Accounting Research;2023-05-10

5. Comparison of Machine Learning Algorithms for Prediction of Total Assets;2023 International Conference On Cyber Management And Engineering (CyMaEn);2023-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3