Getting Ready for Lead‐free Solders*

Author:

Lee N.‐C.

Abstract

This paper reviews the status of lead‐free solder development works. Some of the solder systems — Bi‐Sn, Bi‐Sn‐Fe, ln‐Sn, Sn, Sn‐Ag, Sn‐Ag‐Zn, Sn‐Ag‐Zn‐Cu, Sn‐Bi‐Ag, Sn‐Cu, Sn‐Cu‐Ag, Sn‐In‐Ag, Sn‐Sb, Sn‐Zn and Sn‐Zn‐ln — are discussed in more detail, while others are briefly commented on. In general, compared with eutectic Sn‐Pb solder, all the lead‐free solder alternatives investigated more or less exhibit some shortcomings, such as price, physical, metallurgical or mechanical properties. Relatively, Sn‐ln‐containing systems are more promising in terms of solder mechanical properties and soldering performance, although the price of ln may be a concern. Eutectic Sn‐Ag solder doped with Zn, Cu or Sb exhibits good mechanical strength and creep resistance, due to refined microstructure. The Bi‐Sn systems doped with other elements may have a niche in the low temperature soldering field. Eutectic Sn‐Cu has good potential due to its good fatigue resistance. The eutectic Sn‐Zn system modified with ln and/or Ag may be promising in terms of mechanical properties. Finding a lead‐free alternative for high temperature solders presents the biggest challenge to the industry.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractography analysis of Sn-58Bi solder joint after addition of cobalt nanoparticles;Journal of Materials Science: Materials in Electronics;2023-12

2. Effect of Zn nanoparticle doped flux on electromigration damages in SAC305 solder joint;Journal of Materials Science: Materials in Electronics;2023-02

3. Effect of Zn nanoparticle-doped flux on mechanical properties of SAC305 solder joint after electromigration;Journal of Materials Science: Materials in Electronics;2023-01-31

4. Thermodynamic Modeling of the Co-Cu-Sn Ternary System;Journal of Phase Equilibria and Diffusion;2022-04

5. On the Direct Extrusion of Solder Wire from 52In-48Sn Alloy;Machines;2021-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3