Chaos control of the power system via sliding mode based on fuzzy supervisor

Author:

Sarani Ali Abadi Ahmad,Balochian Saeed

Abstract

Purpose The purpose of this paper is to address the problem of control in a typical chaotic power system. Chaotic oscillations cannot only extremely endanger the stabilization of the power system but they can also not be controlled by adding the traditional controllers. So, the sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties. Closed-loop stability is proved using the Lyapunov stability theory. The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of the power system, eliminating control signal chattering and also show less control effort in comparison with the methods considered in previous literatures. Design/methodology/approach The sliding mode control based on a fuzzy supervisor can sufficiently ensure perfect tracking and controlling in the presence of uncertainties. Closed-loop stability is proved using the Lyapunov stability theory. Findings Closed-loop stability is proved using the Lyapunov stability theory. The simulation results show the effectiveness of the proposed method in damping chaotic oscillations of power system, eliminating control signal chattering and also less control effort in comparison with the methods considered in previous literatures. Originality/value Main contributions of the paper are as follows: the chaotic behavior of power systems with two uncertainty parameters and tracking reference signal for the control of generator angle and the controller signal are discussed; designing sliding mode control based on a fuzzy supervisor in order to practically implement for the first time; while the generator speed is constant, the proposed controller will enable the power system to go in any desired trajectory for generator angle at first time; stability of the closed-loop sliding mode control based on the fuzzy supervisor system is proved using the Lyapunov stability theory; simulation of the proposed controller shows that the chattering is low control signal.

Publisher

Emerald

Subject

General Computer Science

Reference38 articles.

1. Nonlinear analysis and attitude control of a gyrostat satellite with chaotic dynamics using discrete-time LQR-OGY;Asian Journal of Control,2016

2. Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system;IEEE Transactions on Power Systems,1992

3. Control of chaos: methods and applications I. Applications;Automation and Remote Control,2003

4. Control of chaos: methods and applications II. Applications;Automation and Remote Control,2004

5. Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement;Physics Letters A,2010

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3