Artificial intelligence (AI) tools for academic research

Author:

Oyelude Adetoun A.

Abstract

Purpose The purpose of the paper is to explore the rapidly evolving landscape of artificial intelligence (AI) tools in academic research, highlighting their potential to transform various stages of the research process. AI tools are transforming academic research, offering numerous benefits and challenges. Design/methodology/approach Academic research is undergoing a significant transformation with the emergence of (AI) tools. These tools have the potential to revolutionize various aspects of research, from literature review to writing and proofreading. An overview of AI applications in literature review, data analysis, writing and proofreading, discussing their benefits and limitations is given. A comprehensive review of existing literature on AI applications in academic research was conducted, focusing on tools and platforms used in various stages of the research process. AI was used in some of the searches for AI applications in use. Findings The analysis reveals that AI tools can enhance research efficiency, accuracy and quality, but also raise important ethical and methodological considerations. AI tools have the potential to significantly enhance academic research, but their adoption requires careful consideration of methodological and ethical implications. The integration of AI tools also raises questions about authorship, accountability and the role of human researchers. The authors conclude by outlining future directions for AI integration in academic research and emphasizing the need for responsible adoption. Originality/value As AI continues to evolve, it is essential for researchers, institutions and policymakers to address the ethical and methodological implications of AI adoption, ensuring responsible integration and harnessing the full potential of AI tools to advance academic research. This is the contribution of the paper to knowledge.

Publisher

Emerald

Reference20 articles.

1. Peeking inside the black box: a survey on explainability of machine learning models;IEEE Access,2018

2. Analysis of representations for domain adaptation;Advances in Neural Information Processing Systems,2010

3. Algorithms for hyper-parameter optimization;Advances in Neural Information Processing Systems,2011

4. Semantics derived automatically from language corpora contain human-like biases;Science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3