Comparative analysis of convolutional neural network and DenseNet121 transfer learning in agriculture focusing on crop leaf disease identification

Author:

Santoso Heru Agus,Fandhi Safsalta Brylian,Febrianto Nanang,Wilujeng Saraswati Galuh,Haw Su-Cheng

Abstract

PurposePlant cultivation holds a pivotal role in agriculture, necessitating precise disease identification for the overall health of plants. This research conducts a comprehensive comparative analysis between two prominent deep learning algorithms, convolutional neural network (CNN) and DenseNet121, with the goal of enhancing disease identification in tomato plant leaves.Design/methodology/approachThe dataset employed in this investigation is a fusion of primary data and publicly available data, covering 13 distinct disease labels and a total of 18,815 images for model training. The data pre-processing workflow prioritized activities such as normalizing pixel dimensions, implementing data augmentation and achieving dataset balance, which were subsequently followed by the modeling and testing phases.FindingsExperimental findings elucidated the superior performance of the DenseNet121 model over the CNN model in disease classification on tomato leaves. The DenseNet121 model attained a training accuracy of 98.27%, a validation accuracy of 87.47% and average recall, precision and F1-score metrics of 87, 88 and 87%, respectively. The ultimate aim was to implement the optimal classifier for a mobile application, namely Tanamin.id, and, therefore, DenseNet121 was the preferred choice.Originality/valueThe integration of private and public data significantly contributes to determining the optimal method. The CNN method achieves a training accuracy of 90.41% and a validation accuracy of 83.33%, whereas the DenseNet121 method excels with a training accuracy of 98.27% and a validation accuracy of 87.47%. The DenseNet121 architecture, comprising 121 layers, a global average pooling (GAP) layer and a dropout layer, showcases its effectiveness. Leveraging categorical_crossentropy as the loss function and utilizing the stochastic gradien descent (SGD) Optimizer with a learning rate of 0.001 guides the course of the training process. The experimental results unequivocally demonstrate the superior performance of DenseNet121 over CNN.

Publisher

Emerald

Reference23 articles.

1. A novel framework for potato leaf disease detection using an efficient deep learning model;Hum Ecol Risk Assess Int J,2023

2. Research on deep learning in apple leaf disease recognition;Comput Electron Agric,2020

3. Plant disease detection and classification by deep learning—a review;IEEE Access,2021

4. MFK Tomato production by country. [cited 2024 Apr 21]. Available from: https://www.worldostats.com/post/tomato-production-by-country-2023

5. Climate change impacts on plant pathogens, food security and paths forward;Nat Rev Microbiol,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3