Seismic fragility assessment of ductile reinforced concrete building frames

Author:

Apu Nibas,Sinha Ravi

Abstract

Purpose Increasing awareness of the society and complying with design requirements of building codes for seismic safety of structures and inhabitants during severe earthquakes are the primary purpose of seismic analysis. This study aims to present the variability in seismic fragility functions for frames of different heights for the most vulnerable condition of structure using nonlinear time history analysis. Design/methodology/approach A total of 4, 8 and 20 stories reinforced concrete (RC) moment-resisting two-dimensional frames are considered for this study. Ground motions (GM) are selected as per the conditional mean spectrum and these are conditioned on a target spectral acceleration at the concern time period. RC frames are designed and detailed as per Indian standards. A concentrated plasticity approach is adopted for non-linear analytical modeling of the RC frames. Deterministic capacity limit states in terms of maximum inter-story drift ratio are considered for different damage states. Fragility functions have been derived following a lognormal distribution from incremental dynamic analysis curves. Finally, the maximum likelihood estimation of the response is obtained for fitting curves with observed fragility. Findings The fragility functions of the three structures reflect that under critical or extreme conditions of GM the taller buildings have higher fragility than the shorter buildings for each level of limit states even though both are designed to meet their code-level design forces. Research limitations/implications The study is conducted on the extreme scenario of GM conditioned on the fundamental time period of each building, whereas comparison can be developed by selecting various methodologies of GM set. The probabilistic capacity model can be developed for future studies to check the fragility variation with deterministic and probabilistic capacity. Originality/value The investigation endeavors to present a comprehensive fragility assessment framework by analytical method. The outcome will be useful in the development of a disaster management strategy for new or old buildings and the response of seismic force with a variation of the building’s height. The findings will also be useful for updating the earthquake-resistant building codes for the new building construction in a similar context.

Publisher

Emerald

Subject

Safety, Risk, Reliability and Quality,Building and Construction

Reference34 articles.

1. Tectonics and earthquake potential of Bangladesh: a review;International Journal of Disaster Resilience in the Built Environment,2020

2. Conditional mean spectrum: tool for ground motion selection;Journal of Structural Engineering,2011

3. An improved algorithm for selecting ground motions to match a conditional spectrum;Journal of Earthquake Engineering,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3