Abstract
PurposeThe ongoing urbanization and decarbonization require deployment of energy storage in the urban energy system to integrate large-scale variable renewable energy (VRE) into the power grids. The cost reductions of batteries enable private entities to invest energy storage for energy management whose operating strategy may differ from traditional storage facilities. This study aims to investigate the impacts of energy storage on the power system with different operation strategies. Two strategies are modeled through a simulation-based regional economic power dispatch model. The profit-oriented strategy denotes the storage system operated by private entities for price arbitrage, and the nonprofit-oriented strategy denotes the storage system dispatched by an independent system operator (ISO) for the whole power system optimization. A case study of Jiangsu, China is conducted. The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under a high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity. This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.Design/methodology/approachThe authors characterize two battery storage operating strategies of profit- and nonprofit-oriented by adopting a simulation-based economic dispatch model. A simulation from 36 years of hourly weather data of wind and solar output from case study of Jiangsu, China is conducted.FindingsThe results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity.Originality/valueThis study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.
Subject
Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems
Reference40 articles.
1. Issues associated with the possible contribution of battery energy storage in ensuring a stable electricity system;The Electricity Journal,2020
2. A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management;Renewable Energy,2016
3. Cost analysis of a power system using probabilistic optimal power flow with energy storage integration and wind generation;International Journal of Electrical Power and Energy Systems,2013
4. Impact of battery technological progress on electricity arbitrage: an application to the Iberian market;Applied Energy,2020
5. Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China;Renewable and Sustainable Energy Reviews,2019
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献