Thermal modeling of variable process parameter effects in powder bed fusion using electron beam

Author:

Kirim Baris,Soylemez Emrecan,Tan Evren,Yasa Evren

Abstract

Purpose This study aims to develop a novel thermal modeling strategy to simulate electron beam powder bed fusion at part scale with machine-varying process parameters strategy. Single-bead and part-scale experiments and modeling were studied. Scanning strategies were described by the process controlling functions that enabled modeling. Design/methodology/approach The finite element analysis thermal model was used along with the powder bed fusion with electron beam experiments. The proposed strategy involves dividing a part into smaller sections and creating meso-scale models for each subsection. These meso-scale models take into consideration the variable process parameters, including power and velocity of the moving heat source, during part building. Subsequently, these models are integrated to perform partscale simulations, enabling more realistic predictions of thermal accumulation and resulting distortions. The model was built and validated with single-bead experiments and bulky parts with different features. Findings Single-bead experiments demonstrated an average error rate of 6%–24% for melt pool dimension prediction using the proposed meso-scale models with different scanning control functions. Part-scale simulations for three different geometries (cantilever beams with supports, bulk artifact and topology-optimized transfer arm) showed good agreement between modeled temperature changes and experimental deformation values. Originality/value This study presents a novel approach for electron beam powder bed fusion modeling that leverages meso-scale models to capture the influence of variable process parameters on part quality. This strategy offers improved accuracy for predicting part geometry and identifying potential defects, leading to a more efficient additive manufacturing process.

Publisher

Emerald

Reference48 articles.

1. Superplasticity in Ti-6Al-4V: characterisation, modelling and applications;Acta Materialia,2015

2. Computational modelling of shaped metal deposition;International Journal for Numerical Methods in Engineering,2011

3. Ansys Additive Manufacturing Simulation (2024), available at: www.ansys.com/products/structures/additive-manufacturing

4. Arcam EBM A2X (2024), available at: www.ge.com/additive/additive-manufacturing/machines/ebm-machines/arcam-ebm-a2x

5. An overview of residual stresses in metal powder bed fusion;Additive Manufacturing,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3