Opportunities and challenges in additive manufacturing used in space sector:a comprehensive review

Author:

Ishfaq Kashif,Asad Muhammad,Mahmood Muhammad Arif,Abdullah Mirza,Pruncu Catalin Iulian

Abstract

Purpose The purpose of this study is to compile the successful implementation of three-dimensional (3D) printing in the space for the manufacturing of complex parts. 3D printing is an additive manufacturing (AM) technique that uses metallic powder, ceramic, or polymers to build simple/complex parts. The parts produced possess good strength, low weight, excellent mechanical properties and are cost-effective. This saves a considerable amount of both time and carrying cost. Thereof the challenges and opportunities that the space sector holds for AM is worth reviewing to provide a better insight into further developments and prospects for this technology. Design/methodology/approach The potentiality of 3D printing for the manufacturing of various components under space conditions has been explained. Here, the authors have reviewed the details of manufactured parts used for zero gravity missions, subjected to onboard International Space Station conditions and with those manufactured on earth. Followed by the major opportunities in 3D printing in space which include component repair, material characterization, process improvement and process development along with the new designs. The challenges such as space conditions, availability of power in space, the infrastructure requirements and the quality control or testing of the items that are being built in space are explained along with their possible mitigation strategies. Findings These components are well comparable with those prepared on earth which enables a massive cost saving. Other than the onboard manufacturing process, numerous other components and a complete robot/satellite for outer space applications were manufactured by AM. Moreover, these components can be recycled on board to produce feedstock for the next materials. The parts produced in space are bought back and compared with those built on earth. There is a difference in their nature i.e. the flight specimen showed a brittle nature and the ground specimen showed a denser nature. Originality/value The review discusses the advancements of 3D printing in space and provides numerous examples of the applications of 3D printing in space and space applications. The paper is solely dedicated to 3D printing in space. It provides a breakthrough in the literature as a limited amount of literature is available on this topic. The paper aims at highlighting all the challenges that AM faces in the space sector and also the future opportunities that await development.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference95 articles.

1. NASA funds system for 3D printing in space;Metal Powder Report,2017

2. A370: standard test methods and definitions for mechanical testing of steel products;ASTM,2014

3. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing;Business Horizons,2017

4. Non-destructive evaluation (NDE) of composites: infrared (IR) thermography of wind turbine blades, non-destructive eval;Non-Destructive Evaluation (NDE) of Polymer Matrix Composites,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3