Tuneable PTC effect in polymer-wax-carbon composite resistors

Author:

Maeder Thomas,Jacq Caroline,Ammon Ludivine,Ryser Perer

Abstract

Purpose – The purpose of this paper is to study tuneable positive temperature coefficient (PTC) effect in polymer-wax-carbon composite resistors. The resistivity dependence on temperature of composite resistors made of carbon fillers dispersed in an organic matrix is known to be strongly affected by the matrix thermal expansion. High PTC effects, i.e. essentially switching from resistive to quasi-insulating behaviour, can be caused by phase changes in the matrix and the assorted volume expansion, a behaviour that has been previously shown with both simple organic waxes and semi-crystalline polymers. However, waxes become very liquid on melting, possibly resulting in carbon sedimentation, and tuneability of semi-crystalline polymers is limited. Design/methodology/approach – The authors therefore study a ternary polymer-wax-conductor (ethylcellulose-octadecanol-graphite) composite resistor system, where polymer and wax fuse to a viscous liquid on heating, and re-solidify and separate by crystallisation of the wax on cooling. Findings – It is shown that with appropriate formulation, the resulting resistors exhibit strong PTC effects, linked with the melting and crystallisation of the wax component. The behaviour somewhat depends on sample history, and notably cooling speed. Research limitations/implications – The phase equilibria and transformation kinetics of the polymer-wax system (including possible wax polymorphism), as well as the exact mechanism of the conductivity transition, remain to be investigated. Originality/value – As many compatible polymer-wax systems with different melting/solidification behaviours are available, ternary polymer-wax-conductor composite PTC resistors allow a high tuneability of properties. Moreover, the high viscosity in the liquid state should largely avoid the sedimentation issues present with binary wax-conductor systems.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3