Disposable, acetylcholinesterase-coated, screen-printed carbon electrodes for the determination of organophosphorus pesticides

Author:

Walter Piotr,Pepłowski Andrzej,Górski Łukasz,Janczak Daniel,Jakubowska Małgorzata

Abstract

Purpose Because of the bioaccumulation effect, organophosphorus pesticides cause long-term damage to mammals, even at small concentrations. The ability to perturb the phospholipid bilayer structure as well as the overstimulation of cholinergic receptors makes them hazardous to humans. Therefore, there is a need for a quick and inexpensive detection of organophosphorus pesticides for agricultural and household use. As organophosphorus pesticides are acetylcholinesterase (AChE) inhibitors, biosensors using this mechanism hold a great promise to meet these requirements with a fraction of reagents and time used for measurement comparing to laboratory methods. This study aims to manufacture AChE-coated, screen-printed carbon electrodes applicable in such amperometric biosensors. Design/methodology/approach AChE enzyme, known for catalytic activity for the hydrolysis of acetylthiocholine (ATCh), could be used to obtain electrochemically active thiocholine from acetylthiocholine chloride in aqueous solutions. Using Malathion’s inhibitory effect towards AChE, pesticides’ presence can be detected by reduction of anodic oxidation peaks of thiocholine in cyclic voltammetry. Findings The conducted research proved that it is possible to detect pesticides using low-cost, simple-to-manufacture screen-printed graphite (GR) electrodes with an enzymatic (AChE) coating. Investigated electrodes displayed significant catalytic activity to the hydrolysis of ATCh. Owing to inhibition effect of the enzyme, amperometric response of the samples decreased in pesticide-spiked solution, allowing determination of organophosphorus pesticides. Originality/value Printed electronics has grown significantly in recent years as well as research focused on carbon-based nanocomposites. Yet, the utilization of carbon nanocomposites in screen-printed electronics is still considered a novelty in the market. Biosensors have proved useful not only in laboratory conditions but also in home applications, as glucometers are a superior solution for glucose determination for personal use. Although pesticides could be detected accurately using chromatography, spectroscopy, spectrometry or spectrophotometry, the market lacks low-cost, disposable solutions for pesticide detection applicable for household use. With biosensing techniques and electric paths screen-printed with GR or graphene nanocomposites, this preliminary research focuses on meeting these needs.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3