Electric, magnetic and high frequency properties of screen printed ferrite-ferroelectric composite thick films on alumina substrate

Author:

Patil N.,Velhal N.B.,Pawar R.,Puri Vijaya

Abstract

Purpose – The purpose of this article is to study the effect of ferrite content on electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 − y)Pb(Zr0.52Ti0.48)O3 (y = 0.0, 0.15, 0.30, 0.45, 1.0) thick films on alumina. Design/methodology/approach – Thick films of ferrite–ferroelectric composite on alumina substrate have been delineated using screen printing technique. The structural analysis was carried out using X-ray diffraction method and scanning electron microscopy. The DC electrical resistivity was measured using the two-probe method. The magnetic measurement was carried out using a vibrating sample magnetometer. Microwave absorption was studied in the 8-18 GHz frequency range by using the vector network analyzer (N5230A). The permittivity in the 8-18 GHz frequency range was measured by using voltage standing wave ratio slotted section method. Findings – The formation of two individual ferrite–ferroelectric phases in composite thick films was confirmed by the X-ray diffraction patterns. The scanning electron microscope morphologies show the growth of cobalt-substituted nickel cadmium ferrite grains which are well dispersed in lead zirconium titanate matrix. The DC electrical resistivity increases with increase in ferrite content and decreases with increase in temperature. The present ferrite shows ferromagnetic nature and it increases saturation magnetization and coercivity of the composite thick films. Tuning properties are observed in the Ku-band and broadband X-band microwave absorption is observed in the composite thick films. The imaginary part of permittivity increases with an increase in ferrite content, which increases microwave absorption. The real part of microwave permittivity varied from 17 to around 22 with an increase in ferrite content and it decreases with frequency. The microwave conductivity, which increases with an increase in ferrite content, reveals the loss of polaron conduction, which supports the dielectric loss in the microwave region. Originality/value – Electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 − y)Pb(Zr0.52Ti0.48)O3 (y = 0.0, 0.15, 0.30, 0.45, 1.0) composite thick films on alumina substrate is reported for the first time.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3