Wear analysis of centrifugal slurry pump impellers

Author:

Khalid Y.A.,Sapuan S.M.

Abstract

PurposeTo design and fabricate a wear testing rig for a water pump impeller and to select a parameter that can be used to determine the wear rates of slurry pump impeller.Design/methodology/approachA wear equipment was designed and fabricated in this study that of main rotating shaft, supported by two ball bearings, and main electric motor bully mechanism for the rotational speed torque needed. An impeller made of cast iron was selected. The wear medium selected consists of solid particles and water. The tests were conducted by letting the impeller to rotate in slurry. The wear data collection are divided into impeller's weight loss, impeller's diameter loss, impeller blade's thickness loss, impeller's blade height loss and impeller's thickness change.FindingsThe major type of wear that takes place in this experiment is erosion. The weight loss of the impeller is due to the material removal from the impeller as result of erosion wear. The diameter loss of the impeller is attributed to the impingement of solid particles on the surface area. The surface topography under the microscope indicates that the region near the center of impeller encounters less wear compared to the region at the rim of the impeller.Originality/valueFrom this study, among all the parameters studied, the height loss of impeller blades encounters the highest percentage of wear. This is useful for determining the running hours before the complete failure of the impeller for slurry and impeller types used in this study.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3