Wear behavior of as‐cast and heat treated triple particle size SiC reinforced aluminum metal matrix composites

Author:

Maleque Abdul,Karim Rezaul

Abstract

PurposeThe purpose of this paper is to study the wear behavior of as‐cast (AC) and heat treated (HT) triple particle size (TPS) silicon carbide (SiC) reinforced aluminum alloy‐based metal matrix composites (SiCp/Al‐MMC).Design/methodology/approachAl‐MMCs were prepared using 20 vol.% SiC reinforcement into aluminum metal matrix and developed using a stir casting process. Stir casting is a primary process of composite production whereby the reinforcement ingredient material is incorporated into the molten metal by stirring. The TPS composite consist of SiC of three different sizes viz., coarse, intermediate, and fine. The solution heat treatment was done on AC composite at 540°C for 4 h followed by precipitation treatment. The wear test was carried out using a pin‐on‐disc type tribo‐test machine under dry sliding condition. A mathematical analysis was also done for power factor values based on wear and friction results. The wear morphology of the damaged surface was also studied using optical microscope and scanning electron microscope (SEM) in this investigation.FindingsThe test results showed that HT composite exhibited better wear resistance properties compared to AC composite. It is anticipated that heat treatment could be an effective method of optimizing the wear resistance properties of the developed Al‐MMC material.Practical implicationsThis paper provides a way to enhance the wear behavior of automotive tribo‐components such as brake rotor (disc and drum), brake pad, piston cylinder, etc.Originality/valueThis paper compares the wear behavior of AC and HT TPS reinforced Al‐MMC material under dry sliding condition.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3