An adaptive polynomial dimensional decomposition method and its application in reliability analysis

Author:

Sheng XiangqianORCID,Fan WenliangORCID,Zhang Qingbin,Li Zhengling

Abstract

PurposeThe polynomial dimensional decomposition (PDD) method is a popular tool to establish a surrogate model in several scientific areas and engineering disciplines. The selection of appropriate truncated polynomials is the main topic in the PDD. In this paper, an easy-to-implement adaptive PDD method with a better balance between precision and efficiency is proposed.Design/methodology/approachFirst, the original random variables are transformed into corresponding independent reference variables according to the statistical information of variables. Second, the performance function is decomposed as a summation of component functions that can be approximated through a series of orthogonal polynomials. Third, the truncated maximum order of the orthogonal polynomial functions is determined through the nonlinear judgment method. The corresponding expansion coefficients are calculated through the point estimation method. Subsequently, the performance function is reconstructed through appropriate orthogonal polynomials and known expansion coefficients.FindingsSeveral examples are investigated to illustrate the accuracy and efficiency of the proposed method compared with the other methods in reliability analysis.Originality/valueThe number of unknown coefficients is significantly reduced, and the computational burden for reliability analysis is eased accordingly. The coefficient evaluation for the multivariate component function is decoupled with the order judgment of the variable. The proposed method achieves a good trade-off of efficiency and accuracy for reliability analysis.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3