A hybrid method to determine optimal design axial forces of servo steel struts in excavations with high deformation requirements

Author:

Di Honggui,Jin YuyinORCID,Zhou Shunhua,Wu Di

Abstract

PurposeThe application of servo steel struts enables the active control of the excavation-induced deformation in foundation pits. However, there is currently only one design axial force for each servo steel strut, which requires in-situ axial force adjustments based on the experience of site engineers. The purpose of this study is to develop a method for determining the design axial forces of servo steel struts at different excavation steps.Design/methodology/approachIn this study, a hybrid method for determining the design axial forces of servo steel struts in different excavation steps was established based on the combination of the elastic foundation beam model and nonlinear optimisation.FindingsThe hybrid method is capable of providing a better set of design axial forces than the original design method. The lateral wall displacement and bending moment could be better controlled. Ordinary steel struts should be prevented from being set between servo steel struts to avoid axial force losses.Practical implicationsThe axial forces of the servo steel struts at different excavation steps should be designed to achieve better deformation control effects. Moreover, a well-designed set of axial forces can also reduce the internal forces of the retaining structure.Originality/valueThe hybrid method enables the determination of the design axial forces of servo steel struts at different excavation steps, which can guide axial force adjustments in practical projects.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3