Research progress of high-performance BEM and investigation on convergence of GMRES in local stress analysis of slender real thin-plate beams

Author:

Yao Zhenhan,Zheng Xiaoping,Yuan Han,Feng Jinlong

Abstract

Purpose Based on the error analysis, the authors proposed a new kind of high accuracy boundary element method (BEM) (HABEM), and for the large-scale problems, the fast algorithm, such as adaptive cross approximation (ACA) with generalized minimal residual (GMRES) is introduced to develop the high performance BEM (HPBEM). It is found that for slender beams, the stress analysis using iterative solver GMRES will difficult to converge. For the analysis of slender beams and thin structures, to enhance the efficiency of GMRES solver becomes a key problem in the development of the HPBEM. The purpose of this paper is study on the preconditioning method to solve this convergence problem, and it is started from the 2D BE analysis of slender beams. Design/methodology/approach The conventional sparse approximate inverse (SAI) based on adjacent nodes is modified to that based on adjacent nodes along the boundary line. In addition, the authors proposed a dual node variable merging (DNVM) preprocessing for slender thin-plate beams. As benchmark problems, the pure bending of thin-plate beam and the local stress analysis (LSA) of real thin-plate cantilever beam are applied to verify the effect of these two preconditioning method. Findings For the LSA of real thin-plate cantilever beams, as GMRES (m) without preconditioning applied, it is difficult to converge provided the length to height ratio greater than 50. Even with the preconditioner SAI or DNVM, it is also difficult to obtain the converged results. For the slender real beams, the iteration of GMRES (m) with SAI or DNVM stopped at wrong deformation state, and the computation failed. By changing zero initial solution to the analytical displacement solution of conventional beam theory, GMRES (m) with SAI or DNVM will not be stopped at wrong deformation state, but the stress error is still difficult to converge. However, by GMRES (m) combined with both SAI and DNVM preconditioning, the computation efficiency enhanced significantly. Originality/value This paper presents two preconditioners: DNVM and a modified SAI based on adjacent nodes along the boundary line of slender thin-plate beam. In the LSA, by using GMRES (m) combined with both DNVM and SAI, the computation efficiency enhanced significantly. It provides a reference for the further development of the 3D HPBEM in the LSA of real beam, plate and shell structures.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference47 articles.

1. The boundary element method,2002

2. Iterative solution of BEM equations by GMRES algorithm;Comput Struct,1992

3. Approximation of boundary element matrices;Numerische Mathematik,2000

4. Preconditioning techniques for large linear systems: a survey;J Comput Phys,2002

5. A comparative study of sparse approximate inverse preconditioners;Appl. Numer Math,1999

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3