Geometrically nonlinear analysis by the generalized finite element method

Author:

Gomes Lorena Leocádio,Barros Felicio Bruzzi,Penna Samuel Silva,Pitangueira Roque Luiz da Silva

Abstract

Purpose The purpose of this paper is to evaluate the capabilities of the generalized finite element method (GFEM) under the context of the geometrically nonlinear analysis. The effect of large displacements and deformations, typical of such analysis, induces a significant distortion of the element mesh, penalizing the quality of the standard finite element method approximation. The main concern here is to identify how the enrichment strategy from GFEM, that usually makes this method less susceptible to the mesh distortion, may be used under the total and updated Lagrangian formulations. Design/methodology/approach An existing computational environment that allows linear and nonlinear analysis, has been used to implement the analysis with geometric nonlinearity by GFEM, using different polynomial enrichments. Findings The geometrically nonlinear analysis using total and updated Lagrangian formulations are considered in GFEM. Classical problems are numerically simulated and the accuracy and robustness of the GFEM are highlighted. Originality/value This study shows a novel study about GFEM analysis using a complete polynomial space to enrich the approximation of the geometrically nonlinear analysis adopting the total and updated Lagrangian formulations. This strategy guarantees the good precision of the analysis for higher level of mesh distortion in the case of the total Lagrangian formulation. On the other hand, in the updated Lagrangian approach, the need of updating the degrees of freedom during the incremental and iterative solution are for the first time identified and discussed here.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference51 articles.

1. An object-oriented approach to the generalized finite element method;Advances in Engineering Software,2013

2. The partition of unity method;International Journal for Numerical Methods in Engineering,1997

3. Generalized finite element method in structural nonlinear analysis;Computational Mechanics,2004

4. On error estimator and p-adaptivity in the generalized finite element method;International Journal for Numerical Methods in Engineering,2004

5. Finite element procedures,1996

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3