A state space boundary element method for elasticity of functionally graded materials

Author:

Cheng Changzheng,Han Zhilin,Niu Zhongrong,Sheng Hongyu

Abstract

Purpose The state space method (SSM) is good at analyzing the interfacial physical quantities in laminated materials, while it has difficulty in calculating the mechanical quantities of interior points, which can be easily evaluated by the boundary element method (BEM). However, the material has to be divided into many subdomains when the traditional BEM is applied to analyze the functionally graded material (FGM), so that the computational amount will be increased enormously. This study aims to couple these two methods to strengthen their advantages and overcome their disadvantages. Design/methodology/approach Herein, a state space BEM in which the SSM is coupled by the BEM is proposed to analyze the elasticity of FGMs, where one BEM domain is set and the others belong to SSM domains. The discretized elements occur only on the boundary of the BEM domain and at the interfaces between different SSM domains. In SSM domains, the horizontal interfaces of FGMs are discretized by linear elements and the variables along the vertical direction are yielded by the precise integration method. Findings The accuracy of the proposed method is verified by comparing the present results with the ones from the finite element method (FEM). It is found that the present method can provide accurate displacements and stresses in the FGMs by fewer freedom degrees in comparison with the FEM. In addition, the present method can provide continuous interfacial stresses at the interfaces between different material domains, while the interfacial stresses by the FEM are discontinuous. Originality/value The system equations of the state space BEM are built by combining the boundary integral equation with the state equations according to the continuity conditions at the interfaces. The mechanical parameters of any inner point can be evaluated by the boundary integral equation after the unknowns on the boundaries and interfaces are determined by the system equation.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference36 articles.

1. Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity;Composite Structures,2014

2. A coupled FEM/BEM approach and its accuracy for solving crack problems in fracture mechanics;International Journal of Solids and Structures,2007

3. Modification of dynamic characteristics of FGM plates with integrated piezoelectric layers using first‐and second‐order approximations;International Journal for Numerical Methods in Engineering,2007

4. Three-dimensional state space spline finite strip analysis of angle-plied laminates;Composites Part B: Engineering,2014

5. A fast BEM for the analysis of damaged structures with bonded piezoelectric sensors;Computer Methods in Applied Mechanics and Engineering,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3