Regularization regression methods for aerodynamic parameter estimation from flight data

Author:

Kumar Ajit,Ghosh A.K.

Abstract

Purpose The purpose of this study is to estimate aerodynamic parameters using regularized regression-based methods. Design/methodology/approach Regularized regression methods used are LASSO, ridge and elastic net. Findings A viable option of aerodynamic parameter estimation from regularized regression-based methods is found. Practical implications Efficacy of the methods is examined on flight test data. Originality/value This study provides regularized regression-based methods for aerodynamic parameter estimation from the flight test data.

Publisher

Emerald

Subject

Aerospace Engineering

Reference29 articles.

1. Regression techniques for aircraft parameter identification from noisy measurements in maneuvering flight,1992

2. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter;Aerospace Science and Technology,2010

3. Penalized regressions: the bridge versus the lasso;Journal of Computational and Graphical Statistics,1998

4. Estimation of aircraft lateral-directional parameters using neural networks;Journal of Aircraft,1998

5. Generalized cross-validation as a method for choosing a good ridge parameter;Technometrics,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3