Multidisciplinary wing design of a light long endurance UAV

Author:

Grendysa Wojciech

Abstract

Purpose The purpose of this paper is finding the optimal geometric parameters and developing of a method for optimizing a light unmanned aerial vehicle (UAV) wing, maximizing, at the same time, its endurance with the assumed parameters of aircraft mission. Design/methodology/approach The research is based on the experience gained by the author’s contribution to the project of building medium-altitude, long-endurance class, light UAV called “Samonit”. The author was responsible for the structure design, wind tunnel tests and flight tests of the “Samonit” aircraft. Based on the experience, the author was able to develop an optimization process considering various disciplines involved in the whole aircraft design topics such as aerodynamics, flight mechanics, structural stiffness and weight, aircraft stability and maneuverability. The presented methodology has a multidisciplinary nature, as in the process of optimization both aerodynamic aspects and the influence of wing geometric parameters on the wing structure and weight and the aircraft payload were taken into account. The optimal wing configuration was obtained using the genetic algorithms. Findings As a result, a set of wing geometrical parameters has been obtained that allowed for achieving twice as long endurance as compared with the initial one. Practical implications Using the methodology presented in the paper, an aircraft designer can easily find the optimum wing configuration of a designed aircraft, satisfying the mission requirements in a best way. Originality/value An original procedure has been developed, based on the actual design, wind tunnel tests and numerical calculations of “Samonit” aircraft, enabling the determination of optimum wing configuration for a small unmanned aircraft.

Publisher

Emerald

Subject

Aerospace Engineering

Reference21 articles.

1. Analysis and opimisation of a male UAV loaded structure;Aircraft Engineering and Aerospace Technology,2006

2. Common computational model for coupling panel method with finite element method;Aircraft Engineering and Aerospace Technology,2017

3. Male UAV design of an increased reliability level;Aircraft Engineering and Aerospace Technology,2006

4. Flight dynamics models used in different national and international projects;Aircraft Engineering and Aerospace Technology,2014

5. Goraj, Z. Nowakowski, M. and Hajduk, J. (2010), “Long term influence of UAVNET/USICO/CAPECON projects on polish UAS activities (research/design/testing/production/education etc)”, UAVNET WORKSHOP No. 18, Tel Aviv, 20-21 Oct. 2010, available at: www.uavnet.org (accessed 20 November 2011).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3