On the dynamic neural network toolbox design for identification, estimation and control

Author:

Chairez IsaacORCID,Guarneros-Sandoval Israel AlejandroORCID,Prud Vlad,Andrianova OlgaORCID,Ernest SleptsovORCID,Chertopolokhov ViktorORCID,Bugriy GrigoryORCID,Mukhamedov ArthurORCID

Abstract

PurposeThere are common problems in the identification of uncertain nonlinear systems, nonparametric approximation, state estimation, and automatic control. Dynamic neural network (DNN) approximation can simplify the development of all the aforementioned problems in either continuous or discrete systems. A DNN is represented by a system of differential or recurrent equations defined in the space of vector activation functions with weights and offsets that are functionally associated with the input data.Design/methodology/approachThis study describes the version of the toolbox, that can be used to identify the dynamics of the black box and restore the laws underlying the system using known inputs and outputs. Depending on the completeness of the information, the toolbox allows users to change the DNN structure to suit specific tasks.FindingsThe toolbox consists of three main components: user layer, network manager, and network instance. The user layer provides high-level control and monitoring of system performance. The network manager serves as an intermediary between the user layer and the network instance, and allows the user layer to start and stop learning, providing an interface to indirectly access the internal data of the DNN.Research limitations/implicationsControl capability is limited to adjusting a small number of numerical parameters and selecting functional parameters from a predefined list.Originality/valueThe key feature of the toolbox is the possibility of developing an algorithmic semi-automatic selection of activation function parameters based on optimization problem solutions.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3