Author:
Zhang Yicha,Bernard Alain,Gupta Ravi Kumar,Harik Ramy
Abstract
Purpose
The purpose of this paper is to present research work based on the authors’ conceptual framework reported in the VRAP Conference 2013. It is related with an efficient method to obtain an optimal part build orientation for additive manufacturing (AM) by using AM features with associated AM production knowledge and multi-attribute decision-making (MADM). The paper also emphasizes the importance of AM feature and the implied AM knowledge in AM process planning.
Design/methodology/approach
To solve the orientation problem in AM, two sub-tasks, the generation of a set of alternative orientations and the identification of an optimal one within the generated list, should be accomplished. In this paper, AM feature is defined and associated with AM production knowledge to be used for generating a set of alternative orientations. Key attributes for the decision-making of the orientation problem are then identified and used to represent those generated orientations. Finally, an integrated MADM model is adopted to find out the optimal orientation among the generated alternative orientations.
Findings
The proposed method to find out an optimal part build orientation for those parts with simple or medium complex geometric shapes is reasonable and efficient. It also has the potential to deal with more complex parts with cellular or porous structures in a short time by using high-performance computers.
Research limitations/implications
The proposed method is a proof-of-concept. There is a need to investigate AM feature types and the association with related AM production knowledge further so as to suite the context of orientating parts with more complex geometric features. There are also research opportunities for developing more advanced algorithms to recognize AM features and generate alternative orientations and refine alternative orientations.
Originality/value
AM feature is defined and introduced to the orientation problem in AM for generating the alternative orientations. It is also used as one of the key attributes for decision-making so as to help express production requirements on specific geometric features of a desired part.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference53 articles.
1. Part orientation and build cost determination in layered manufacturing, Computer-Aided Design;Computer-Aided Design,1998
2. On the computation of part orientation using support structures in layered manufacturing,1994
3. An overview on knowledge management,2008
4. A tool for computer-aided orientation selection in additive manufacturing processes,2013
5. Energy inputs to additive manufacturing: does capacity utilization matter?,2011
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献