Study on the role of deposition path in electron beam freeform fabrication process

Author:

Yan Wuzhu,Yue Zhufeng,Feng Jianwen

Abstract

Purpose The present work aims to reveal the effect of deposition paths on transient temperature, transient stress, residual stress and residual warping in the electron beam freeform fabrication (EBF) process. Design/methodology/approach Six typical deposition paths were involved in the finite element (FE) simulations of EBF process by implementing a specially written program. Findings The results showed that the deposition path had a remarkable influence on heat transfer and transient temperature distribution in the scanning process, resulting in different residual stress and residual warping after cooling to room temperature. The largest and smallest temperature gradients were obtained from the zigzag and alternate-line paths, respectively. Meanwhile, the temperature gradient decreased with the increase of deposited layers. The optimum deposition path, namely, the alternate-line pattern, was determined with respect to the residual stress and residual warping. Originality/value Although some researcher revealed the importance of deposition path through FE analysis and experimental observation, their studies were usually confined within one type of deposition pattern. A complete investigation of typical deposition paths and comparison among them are still lacking in literature. To address the aforementioned gap, the present work started by extensive FE simulations of EBF process involving six representative deposition paths, namely, the alternate-line, zigzag, raster, inside-out spiral, outside-in spiral and Hilbert. For each deposition path, the transient temperature field, residual stress and residual deformation were obtained to optimize the deposition path.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference31 articles.

1. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er;Materials Science and Engineering: A,2012

2. Distortion minimization of laser-processed components through control of laser scanning patterns;Rapid Prototyping Journal,2002

3. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders;Acta Materialia,2004

4. Electron beam solid freeform fabrication of metal parts,1995

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3