The influence of the 3D-printing technology on the physical and mechanical properties of polyphenylene sulfone

Author:

Slonov Azamat Ladinovich,Khashirov Azamat Askerovich,Zhansitov Azamat Aslanovich,Rzhevskaya Elena Viktorovna,Khashirova Svetlana Yuryevna

Abstract

Purpose This paper aims to examine the impact of three-dimensional (3D) printing technological modes (using fused deposition modelling [FDM]) on physical and mechanical properties of samples from polyphenylenesulfone. Design/methodology/approach For this study, the standard test samples were printed using the FDM method at different filament orientation angles, the gaps between them and a different width. The basic physical and mechanical properties, such as the strength, the elastic modulus and the impact strength, were studied. Findings The authors found that the basic mechanical properties strongly depend on the printing settings. In particular, the elastic modulus generally depends on the air gap between rasters, and it is practically independent of the filament orientation angle. In contrast, the impact strength depends on the orientation and the degree of adhesion between filaments: the highest values are reached at the longitudinal orientation of rasters in the sample (0°) and the minimum value of the air gap (−0.025 mm). However, in selecting the optimal mode of 3D printing, it is necessary to take into account the specific geometry of the printing products and the direction of the stress that it will experience. Originality/value The paper presents the results of the investigation of the influence of FDM printing modes on the mechanical properties of samples from polyphenylenesulfone, including impact strength. The authors studied the mechanisms of the destruction under impact loading and revealed the optimal printing settings for making samples with properties which are not inferior to the injection molded samples.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference12 articles.

1. Study of dynamic mechanical properties of fused deposition modelling processed ULTEM material;American Journal of Engineering and Applied Sciences,2014

2. Anisotropic material properties of fused deposition modeling ABS;Rapid Prototyping Journal,2002

3. Critical parameters influencing the quality of prototypes in fused deposition modeling;Journal of Material Processing Technology,2001

4. Mechanical properties of fused deposition modelling parts manufactured with ultem *9085,2011

5. New trends in rapid product development;CIRP Annals-Manufacturing Technology,2002

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3